Mathematical models of RNA silencing: unidirectional amplification limits accidental self-directed reactions.

نویسندگان

  • Carl T Bergstrom
  • Erin McKittrick
  • Rustom Antia
چکیده

RNA silencing, found broadly throughout the eukaryotes, posttranscriptionally suppresses the expression of "aberrant" genes including those of many viruses and transposons. Similar to the specific immune system of vertebrates, RNA silencing works by generating specific responses against foreign elements and rapidly amplifying these responses to clear or otherwise inactivate the threat. Also like the vertebrate immune system, RNA-silencing systems risk making mistakes and mounting undesirable responses against the self. We develop a set of mathematical models of RNA silencing. We show that current models of RNA silencing do little to explain what prevents mistaken reactions from silencing vital organismal genes. We extend the basic models to show that the presumed unidirectional nature of the amplification process (namely, unidirectional RNA-directed RNA polymerase-mediated synthesis of secondary double-stranded RNA as observed in Caenorhabditis elegans) serves as a "safety mechanism" that safeguards against accidental generation of damaging self-directed reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection from Feed-Forward Amplification in an Amplified RNAi Mechanism

The effectiveness of RNA interference (RNAi) in many organisms is potentiated through the signal-amplifying activity of a targeted RNA-directed RNA polymerase (RdRP) system that can convert a small population of exogenously-encountered dsRNA fragments into an abundant internal pool of small interfering RNA (siRNA). As for any biological amplification system, we expect an underlying architecture...

متن کامل

The RNA Silencing Pathway: The Bits and Pieces That Matter

Cellular pathways are generally proposed on the basis of available experimental knowledge. The proposed pathways, however, may be inadequate to describe the phenomena they are supposed to explain. For instance, by means of concise mathematical models we are able to reveal shortcomings in the current description of the pathway of RNA silencing. The silencing pathway operates by cleaving siRNAs f...

متن کامل

A novel RNAi protein, Dsh1, assembles RNAi machinery on chromatin to amplify heterochromatic siRNA.

In fission yeast, siRNA is generated from pericentromeric noncoding RNA by the RNAi machinery. siRNA synthesis and heterochromatin formation are interdependent, forming a self-reinforcing loop on chromatin. In this system, siRNA is amplified by the RNA-dependent RNA polymerase complex (RDRC) and the endoribonuclease Dcr1, which synthesizes dsRNA and processes the dsRNA, respectively. The amplif...

متن کامل

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

A Ribonuclease Coordinates siRNA Amplification and mRNA Cleavage during RNAi

Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 20  شماره 

صفحات  -

تاریخ انتشار 2003